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ADVERSARIAL ATTACKS

panda “gibbon”attack perturbation
57.7% 99.3%

Image from: Goodfellow, et al. “Explaining and Harnessing Adversarial Examples.” ICLR, 2015.

An attacker can make small perturbation that are numerically significant,
but semantically & perceptually meaningless.

What to do?

Make our own perturbations.
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TRANSFORMATIONS FOR DEFENSE

• Modify the image at inference time.
- e.g. by blurring, adding noise, desaturating.

• This should interfere with the adversary’s ability 
to find a successful attack perturbation.

• This has been tried before…
…and it didn’t work.

• It makes following the gradient between original 
and attacked image only trivially harder.

So what’s different with BaRT?

1. Take a large set of transformations.

2. Parameterize each one randomly.

3. Randomly select a subset to apply for each input.

4. Apply them in randomized, serial order.
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Transform 1:
Noise injection

and

original image

Transform 2:
Histogram Eq.

Transform 3:
Partial Gray

and



EXAMPLES OF SINGLE TRANSFORMS
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original image

Example output #1 

Alter LAB
Convert to CIE LAB color space, perturb 
w/ random offset, convert back to RGB

Gaussian Blur
Blur using a Gaussian with randomly 

chosen standard deviation

Alter XYZ
Convert to CIE XYZ color space, perturb 
w/ random offset, convert back to RGB

Example output #2 Example output #3



MANY WEAK DEFENSES MAKE A STRONG DEFENSE
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• Twenty five weak defenses to choose from.
- On their own, each can be easily defeated.
- When ensembled together, they provide state-of-the-art defense.
- “Randomness on top of randomness”

Original image Example image,
5 transforms

Example image,
5 transforms



RANDOMNESS ON TOP OF RANDOMNESS
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Instead of attacking this: …you have to attack this:

(Example images, 5 transforms)

• Every time the adversary takes another gradient step, the image is being transformed differently.
• The direction to the decision surface is changing, so subsequent gradient steps are not aligned.



RESULTS: VARYING ATTACK STRENGTH

• Created the strongest adversaries we could (PGD).
- Implemented BPDA and EoT to allow the 

adversary to approximate each transform.
- Allowed attacker to know the randomly chosen 

parameters of each defense.
- Allowed adversarial distance of up to ε = 32.
- Thoroughly tested for obfuscated gradients.
- Created a new attack we thought might be 

better able to defeat BaRT.
• BaRT surpasses the previous state-of-the-art 

defense for ImageNet. (Adversarial Training.*)
- Top-5 accuracy of >57% when under attack.
- Higher Top-1 accuracy than the Top-5 accuracy 

of Adversarial Training when ε≥ 4.

8* Kurakin, Goodfellow & Bengio. “Adversarial Machine Learning at Scale.” ICLR, 2017.
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VARYING NUMBER OF DEFENSIVE TRANSFORMS:
UNTARGETED ATTACKS

• Adding more transforms to the ensemble costs 
accuracy when not being attack.

• But it increases accuracy when under attacked.
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VARYING NUMBER OF DEFENSIVE TRANSFORMS:
TARGETED ATTACKS

• With no defensive transforms, the PGD attacker 
had 100% success rate.

• With 10 defensive transforms, success falls to 0%.
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CONCLUSIONS

THANK YOU For more information, please contact us!

• By integrating domain knowledge 
(image transforms) and 
randomness (ensembling), we 
develop a new defense against 
adversarial attacks.

• We provide evidence that weak 
defenses can have value.

• BaRT is simple to implement &
use in the short term, and gives us 
inspiration on how we might 
develop long-term defenses.

• Fine tune transformations &
add others to the pool of 
options.

• Ensembling expands BaRT’s
defense-in-depth to allow 
defense-in-width as well.

• Apply to other domains.
• Can we use randomness to 

build a provably robust 
defense?

• Adapting defensive strength 
(i.e., number of transforms) vs. 
throughput for real-world 
applications.
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Future work:


