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ABSTRACT
The potential lack of fairness in the outputs of machine learning

algorithms has recently gained attention both within the research

community as well as in society more broadly. Surprisingly, there

is no prior work developing tree-induction algorithms for build-

ing fair decision trees or fair random forests. These methods have

widespread popularity as they are one of the few to be simultane-

ously interpretable, non-linear, and easy-to-use. In this paper we

develop, to our knowledge, the first technique for the induction of

fair decision trees.We show that our “Fair Forest” retains the bene-

fits of the tree-based approach, while providing both greater accu-

racy and fairness than other alternatives, for both “group fairness”

and “individual fairness.” We also introduce new measures for fair-

ness which are able to handle multinomial and continues attributes

as well as regression problems, as opposed to binary attributes and

labels only. Finally, we demonstrate a new, more robust evaluation

procedure for algorithms that considers the dataset in its entirety

rather than only a specific protected attribute.
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1 INTRODUCTION
As applications of Machine Learning becomes more pervasive in

society, it is important to consider the fairness of such models.

We consider a model to be fair with respect to some protected

attribute ap (such as age or gender), if it’s predicted label ŷ with

respect to a datumn x is unaffected by changes to ap . Removing

ap from x is not sufficient to meet this goal in practice, as ap ’s
effect is still present as a latent variable [23]. In this work, we

look at adapting decision trees, specifically Random Forests, to this

problem. Given an attribute ap that we wish to protect, we will

show how to induce a “Fair Forest” that provides improved fairness

and accuracy compared to existing approaches.
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Decision Trees have become one of the most widely used classes

of machine learning algorithms. In particular, C4.5 [24] and cart [5]

tree induction approaches, combined with ensembling approaches

like Random Forests [3] and Gradient Boosting [13], have proven to

be potent and effective across a broad spectrum of needs and tasks.

Thesemethods are one of the few to be simultaneously interpretable,

non-linear, and easy-to-use.

Random Forests have proven to be particularly effective. In a

study of over one-hundred datasets, Random Forests were found

to be one of the best performing approaches — even when no

hyperparameter tuning is done [12]. XGBoost, a variant of gradient

boosting, has been used in the winning solutions to over half of

recent Kaggle competitions [8].

Tree-based algorithms also provide a rare degree of interpretabil-

ity. Single trees within an ensemble can be printed in a human-

readable form, allowing the immediate extraction of the decision

process. Further still, there are numerous ways to extract feature

importance scores from any tree-based approach [4, 21]. Being able

to understand how a model reaches its decision is of special utility

when we desire fair decision algorithms, as it gives us a method

to double-check that the model appears to be making reasonable

judgments. This interpretability has already been exploited in prior

work to understand black-box models [15].

Given the wide-ranging benefits and successes of tree-based

learning, it is surprising that no prior work has focused on design-

ing fair decision tree induction methods. Other methods for con-

structing fair models will be reviewed in section 2. In section 3 we

propose, to the best of our knowledge, the first fair decision tree

induction method. Our design is simple, requiring only minimal

changes to existing tree induction code, thereby retaining the de-

sirable property that the trees tend to “just work” without hyperpa-

rameter tuning. Our experimental methodology is discussed in sec-

tion 4, including the introduction of novel fairness measures which

are suitable for use with multinomial and continuous attributes. Fi-

nally, experimental results are summarized in section 5, including a

new experimental procedure to evaluate fair algorithms against all

possible features rather than single protected attributed. We end

with our conclusions in section 6.

2 RELATEDWORK
One approach to building fair classifiers is based on data alteration,

where the original corpus is altered to remove or mask informa-

tion about the protected attribute. Some of the first work in fair-

ness learning followed this approach, and attempted to make the

minimum number of changes that removed the discriminative pro-

tective information [17]. Others have attempted to re-label the data

points to ensure a fair determination [22].

Another approach is to regularize the model in such a way that

it is penalized for keeping information that allows it to discriminate

against the protected feature. Some of the earliest work was to
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develop a fair version of Naive Bayes algorithm [7]. Others have

taken to creating a differentiable regularization term, and applying

it to models such as Logistic and Linear Regression [1, 2, 6, 18].

Our new fair induction algorithm is a member of this group of

regularization-based approaches, but unlike prior works has no

parameters to tune.

One final group of related approaches is to build new represen-

tations, which mask the protected attribute [9]. The use of neural

networks have become popular for this task, such as variational

auto encoders [20] and adversarial networks [11]. One of the sem-

inal works in this field used an autoencoder with three separate

terms in the loss [27], and provides one of the largest comparisons

on three now-standard datasets. We replicate their evaluation pro-

cedure in this work.

There is an important commonality in all of these prior works.

The research is done with respect to datasets and attributes where

there is a prior normative expectation of fairness. These are prob-

lems usually of social importance, and protected attributes are in-

trinsic characteristics like age, gender and nationality. But what if

focusing on such problems has inadvertently biased the develop-

ment of fair research? The mechanism for inducing fairness should

work for any attribute, not just those that align with current so-

cietal norms, and must not be over-fit to the protected attributes

used in research. We evaluate our approach with respect to every

possible feature choice, to ensure that the mechanism of producing

fairness is not over-fit to the data.

3 FAIR FORESTS
We propose a simple regularization approach to constructing a

fair decision tree induction algorithm. This is done by altering the

way we measure the information gain G(T ,a), where T is a set of

training examples, and a is the attribute to split on. We will denote

the set of points in each of the k branchs of the tree as Ti ...k . This
normally is combined with an impurity measure I (T ), to give us

G(T ,a) = I (T ) −
∑

∀Ti ∈splits(a)

|Ti |
|T | · I (Ti ) (1)

The information gain scores the quality of a splitting attribute a
by how much it reduces impurity compared to the current impurity.

The larger the gain, the more pure the class labels have become,

and thus, should improve classification performance. In the cart

algorithm, the Gini impurity (2) is normally used for categorical

targets.

IGini(T ) = 1 −
∑

∀Ti ∈splits(label)

(
|Ti |
|T |

)
2

(2)

This greedy approach to feature selection has proven effective

for decades, helping to cement the place of tree-based algorithms

as one of the most popular learning methods. However, this does

not take into account any notion of fairness, which we desire to

add. In this work we do so by altering the information gain scoring

itself, leaving the whole of the tree induction process unaltered.

We begin by noting we need to make two slight alterations for

our approach. First, we will use the Impurity score to measure both

the class label, and now additionally the protected attribute under

consideration. We will denote these two cases as I l , and Ia , and the

Gain with respect to the label and protected attribute asGl
andGa

respectively. Additionally, we will impose the constraint that the

impurity measure must return a value normalized to the range of

[0, 1]. For the Gini measure this becomes

Ia
Gini

(T ) =
1 −∑

∀Ti ∈splits(a)
(
|Ti |
|T |

)
2

1 − |splits(a)|−1
(3)

We require that the impurity score Ia (·) produce a normalized

score so that we can compare scores on a similar scale range, re-

gardless of which features are selected. We then use this to define

a new fair gain measure G
fair

(T ,a), which seeks to balance predic-

tive accuracy with the fairness goal with respect to some protected

attribute af .

G
fair

(T ,b) = Gl (T ,b) −Gaf (T ,b) (4)

Intuitively, (4) will discourage the selection of any feature correlated

with both the protected attribute and the target label. It remains

possible for such a feature to still be selected if no other feature is

better suited.

3.1 Gain for Numeric Features
To our knowledge, no work has yet explored making a continuous

feature the protected attribute. We can derive this naturally in

our new fair induction framework. In cart, trees’ numeric target

variables are optimized by finding the binary split that minimizes

the weighted variance between each split. We use this same notion

to define a gain Gr (T ,a) that is used when either the predictor or

protected attribute is continuous.

Because we are interested in fairness, we look at changes in the

mean value of the splits compared to their parent. Even if variances

differ, if they retain similar means the impact on the fairness is

minimal. To produce a scaled value, we look at the number of

standard deviations from the previous mean is for each of the new

splits, and assume that being more than three standard deviations

is the maximum violation. This gain is defined in (5), where σb,Ti
indicates the standard deviation of attribute b for all datums in the

set Ti , and µb,Ti has the same meaning but for the mean of the

subset.

Gr (T ,b) = 1 − 1

3

∑
Ti ∈split

|Ti |
|T | min

( |µb,T − µb,Ti |
σb,T

, 3

)
(5)

We emphasize that the standard deviation of the parent T is used,

not that of any sub-population Ti . This is because we want to

measure drift with respect to the current status. Re-writing the

continuous splitting criteria in this fashion also produces a score

normalized to the range [0, 1]. We can now continue to use the

G
fair

(T ,b) function with continuous attributes as either the label

target, or the protected attribute.

This framework now gives us a means to induce decision trees,

and thus build Random Forests, for all scenarios: classification

and regression problems, and protected features either nominal

or numeric. We emphasize that this approach to regularizing the

information gain has no tunable parameters as given. This is to

keep with the general utility of decision trees in that they often

“just work.”



While adjusting hyperparameters such as maximum tree depth

may be used to improve classification accuracy, the results of a de-

cision tree are often effective without any kind of parameter tun-

ning. This is important for practical use and adoption. Many fair-

ness based systems require an additional two to three hyperparam-

eters to tune [1, 18, 27], on top of whatever hyperparameters come

with the original model. This increases the computational require-

ments in practice, especially when used with a classic grid-search

approach.

4 METHODOLOGY
There is currently considerable discussion about what it means for

a machine learning model to be fair, which metrics should be used,

and whether or not they can be completely optimized [14, 16, 26].

We choose to use the same evaluation procedure laid out by

Zemel et al. [27]. This makes our results comparable with a larger

body of work, as their approach and metrics have been widely used

through the literature [1, 6, 10, 19]. We present both of their metrics

—Discrimination and Inconsistency
1
— in amanner compatiblewith

both classification and regression problems, while also extending

Discrimination to a broader set of scenarios. Wewill also discuss the

datasets used, their variants tested, and the models we will evaluate.

4.1 Metrics
The first metric we will consider is the Discrimination of the model,

measured by the average difference between the average predicted

scores for each attribute value.

Discrimination =

�����
∑
xi ∈Tap ŷi

|Tap |
−
∑
xi ∈T¬ap ŷi

|T¬ap |

����� (6)

Discrimination measures a macro-level quality of fairness, as such

it is sometimes termed “group fairness.” However, the definition

in (6) is limited to only binary protected attributes. For this work,

we will also look at a generalization of Discrimination to k-way
categorical variables. This is done by re-formulating Discrimination

to consider the sub-population differences from the global mean.

This is equivalent to the original definition when k = 2, and is

given by (7). (See the Appendix for a proof of equivalence.)

Discrimination =
2

k

k∑
i=1

�����
∑
x j ∈T ŷj

|T | −
∑
x j ∈Ti ŷj

|Ti |

����� (7)

We will also consider the discrimination with respect to a contin-

uous variable. With ap denoting a protected continuous attribute,

let xi (ap ) be the value of feature ap for datum xi . We will then

define our new Maximum Discrimination (MaxD) metric as the

largest discrimination score achieved for some binary split of ap by

some threshold t . This is given in equation (8), and gives us a con-

cise definition extending Discrimination to regression tasks. When

a continuous attribute is manually discretized into a binary prob-

lem, as is done in prior work, we obtain by definition that MaxD ≥
Discrimination.

MaxD = argmax

t

�����
∑
xi (ap )<t ŷi

|xi (ap ) < t | −
∑
xi (ap )≥t ŷi

|xi (ap ) ≥ t |

����� (8)

1
Zemel et al. refer to their metric as ‘consistency,’ but define it in a way that only

makes sense for classification. We use Inconsistency = 1 −Consistency. This form is

applicable to both classification and regression tasks.

Given our novel extensions of the Discrimination scores (7) and

(8), we can evaluate this property for any feature. Importantly

though, these metrics are population level measures of fairness.

Satisfying the Discrimination metric does not guarantee that no

bias exists. To measure the potential for bias within sub-populations

of the data set, we look at the Inconsistency metric (9).

Inconsistency =
1

N

N∑
i=1

������ŷi − 1

k

∑
j ∈k-NN(xi )

ŷj

������ (9)

Inconsistency compares the prediction of the model with that of

nearby points, and is sometimes referred to as “individual fairness.”

This is under the assumption that nearby points should produce

similar predictions, and is optimized when the score is as close to

zero as possible.

Discrimination and Inconsistency are both evaluating the fair-

ness of a model, and hence do not consider the true supervised la-

bel y. Maximizing fairness involves minimizing these two scores,

at a potential cost to the model’s predictive utility. We measure

the predictive utility of each model with accuracy or Root Mean

Squared Error (RMSE) for classification and regression problems

respectively. For classification problems, we also consider the Delta
metric, where Delta = Accuracy − Discrimination.

For corpora with a test set, these metrics will all be evaluated on

the given test set. Otherwise, we will evaluate these scores on 10-

fold cross validation. For Inconsistency, we will measure it using

nearest neighbors from all folds, but using the predicted scores

obtained from cross validation. This is in keeping with prior work

[27].

4.2 Data Sets
To evaluate our work, we will use three classification datasets used

by Zemel et al. [27], the German Credit, Adult, and Heritage Health

datasets. For regression we will also use the Health dataset, which

was originally a regression problem (how many days will someone

stay in the hospital?) that was converted to classification (will they

stay one or more days?).

Table 1 summarizes the size, protected attribute, feature count,

and task type for each dataset. For the German and Health datasets,

the protected attribute age is originally encoded as a numeric fea-

ture, but, because prior work did not support continuous protected

attributes, they converted it to a binary categorical feature. We

replicate this in our work, but will also investigate using the origi-

nal continuous version of age.

Table 1. Summary of the datasets used.

Dataset Samples Protected Features Task

German Credit 1,000 Age ≥ 25 20 Good/Bad Credit

Adult Income 45,222 Male/Female 14 Income ≥ 50k

Heritage Health 147,471 Age ≥ 65 149 Stay ≥ 1 day

Heritage HealthR 147,471 Age ≥ 65 149 Days in stay



Table 2. For each classification task, we show Accuracy, Delta, Discrimination, and Inconsistency, in that order. Scores are for our new method
and prior work. Best results shown in bold, second best in italics.

German Adult Health

Acc Delta Discrim Incon Acc Delta Discrim Incon Acc Delta Discrim Incon

DT 0.6890 0.6509 0.0381 0.2140 0.8364 0.4801 0.3563 0.4417 0.8404 0.8196 0.0207 0.2062

DT
F 0.6990 0.6908 0.0082 0.0070 0.7511 0.7444 0.0067 0.0033 0.8474 0.8473 0.0001 0.0001

RF 0.6970 0.6911 0.0059 0.0020 0.8501 0.5463 0.3038 0.3944 0.8472 0.8464 0.0007 0.0005

RF
F 0.7000 0.7000 0.0 0.0 0.7530 0.7530 0.0 0.0 0.8474 0.8474 0.0 0.0

NB
F

0.6888 0.6314 0.0574 0.3132 0.7847 0.7711 0.0136 0.4366 0.6878 0.5678 0.1200 0.4107

LR 0.6790 0.5517 0.1273 0.3050 0.6787 0.4895 0.1892 0.2703 0.7547 0.6482 0.1064 0.2767

LR
F

0.5953 0.5842 0.0111 0.1284 0.6758 0.6494 0.0264 0.2234 0.7212 0.7038 0.0174 0.3777

LFR 0.5909 0.5867 0.0042 0.0592 0.7023 0.7018 0.0006 0.1892 0.7365 0.7365 0.0000 0.0000

4.3 Models Evaluated
When listing results, we will compare with standard cart decision

trees (DT) and Random Forests (RF). Our fair variants of these

methods will be denoted as DT
F
and RF

F
.

Since our new fair tree induction can directly protect the original

non-discretized form, we also evaluate in that manner. Models DT
F
c

and RF
F
c indicate a fair decision tree and Random Forest trained

to protect the continuous age attribute. When we do this, we will

continue to evaluate the models’ Discrimination with the originally

proposed threshold.

From Zemel et al. [27], we compare against their proposed Learn-

ing Fair Representations (LFR) approach and their baseline ap-

proaches: Logistic Regression, fair Logistic Regression (LR
F
) [18]

and fair Naive Bayes (NB
F
) [17].

5 EXPERIMENTS
In this section we present the results of our experiments. We re-

mind the reader that for all experiments, we perform no parameter

turning for any of our tree-based models. This is in line with practi-

cal use, and is a benefit for users in both runtime and simplicity. In

these experiments we will show our Fair Forests can be used in the

standard classification scenario with a binary protected attribute. In

addition, we can use a continuous protected attribute and achieve

similar results, and apply both methods to a numeric prediction

target. All code was written in Java using the JSAT library [25].

5.1 Binary Target, Binary Protected
For the classification tasks, the results for our various decision tree

variants can be seen compared to the baselines in Table 2. We can

see that our new Fair Forests win in almost every metric.

Looking at just the tree-based results, we can make two inter-

esting observations. First, that the ensembling and random feature

sub-sampling used by Random Forests appears to improve the fair-

ness of cart trees, both when they do and do not consider our fair-

ness regularization. This is a positive indication for the general use

of Random Forests compared to single decision trees. Second, that

our fairness regularizer can actually improve accuracy. This was
observed on the German and Health datasets. We do not observe

this phenomena with any other fairness approach. While a positive

result, we caution that this should not be a general expectation. It

is always possible that the protected attribute may truly be predic-

tive of the target task. In such cases we would expect performance

to decrease, which we observe on the Adult income dataset.

This result is also important when we contrast to the Logistic

Regression model and its fair variant. On every dataset tested, the

fair variant of LR has worse predictive accuracy than the standard

model. Our fair trees do not suffer in the same way, indicating they

are a more robust approach to building fair models.

The baseline results shown from Zemel et al. [27] required a

grid-search, and were selected to maximize the Delta score. In this

regard our Fair Forests almost dominate the table. The Fair Forest

is second best only once to NB
F
on the Adult Income corpus, with

a relative difference of merely 2.3%. NB
F
achieves this by obtaining

higher accuracies, but also a higher Discrimination.

On both measures of fairness, Discrimination and Inconsistency,

our fair Random Forest dominates the table with empirical zeros.

The best non-tree approach in this regard is the LFR algorithm,

which obtains empirical zeros on the Health dataset and near-zeros

for Discrimination on the German and Adult datasets. However,

LFR’s Inconsistency increases to 0.06 and 0.19 for each respectively.

5.2 Binary Target, Continuous Protected
In all prior literature we are aware of, the protected attribute is

always presented as a binary feature. Our fair tree induction ap-

proach allows us to mark a continuous feature as protected directly,

without first having to discretize it. We can test this ability with the

German and Health datasets, where the protected attribute (age) is
originally a numeric feature. The results comparing this approach

with the classic binary age attribute are shown in Table 3. In this

table Discrimination is based on the original thresholds used to bi-

narize the age.
Here we can see that the Random Forest using the continuous

age (RF
F
c ) and the one using binary age (RF

F
) have equivalent

performance. This appears to be a net effect of the added fairness

Random Forests naturally provide. In this case it becomes more

informative to look at the results from the standard decision tree,

where non-zero Discrimination still occurs.

For both DT
F
and DT

F
c , we can see they continue to reduce

the Discrimination and Inconsistency with respect to the original

decision tree approach. In these cases, DT
F
c appears to uniformly

outperformDT
F
in regards to the fairness metrics, with only a 0.003



Table 3.Classification results on German and Health datasets, where
the protected age attribute is left as a numeric feature, rather than
being converted to a binary categorical one. Best results in bold, sec-
ond best in italics.

German Health

Acc MaxD Discrim Incon Acc MaxD Discrim Incon

DT
F 0.6990 0.0216 0.0082 0.0070 0.8474 0.0001 0.0001 0.0001

DT
F
c 0.6960 0.0054 0.0047 0.0040 0.8474 0.0 0.0 0.0

RF
F 0.7000 0.0 0.0 0.0 0.8474 0.0 0.0 0.0

RF
F
c 0.7000 0.0 0.0 0.0 0.8474 0.0 0.0 0.0

change in accuracy. On the German dataset we can also see that

DT
F
c has improved upon the MaxD score from the DT

F
, dropping

from 0.0216 down to 0.0054. This is reasonable to expect, as DT
F
is

optimizing fairness with respect to a specific value of age, where
DT

F
c is attempting to be fair with respect to all age values.
Further reading of the table indicates the MaxD score for DT

F
c

(0.005) is smaller than the Discrimination score of the DT
F
approach

(0.008). ThismeansDT
F
c has a greater degree of fairnesswith respect

to age for all possible age splits, than DT
F
does with regard to its

single age split of interest. We explain this result by noting that

DT
F
’s single split focus at age ≥ 25means discrimination can occur

in nearby age ranges (e.g., 26-30, or 21-24), and this permissible

“border” discrimination can generalize into the test set. Ultimately,

while protecting the binary age attribute works well compared to

the naive DT in Table 2, these results demonstrate the benefit of

protecting the original numeric attribute: we can provide better

fairness with respect to the threshold of interest, as well as every

possible other threshold.

5.3 Continuous Target
One of the benefits of Decision Trees or Random Forests is that they

can be applied to both classification and regression problems. In

this section we will show that our fair induction strategy improves

fairness in such scenarios, both when protecting on a continuous

or a binary attribute. We do this using the original version of the

Health dataset (see Table 4).

Table 4. Results using the Regression version of the Health dataset,
where Mean Squared Error is the target metric. Best results shown
in bold, second best in italics.

MSE Discrim MaxD Incon

LR 2.722 0.0011 0.0024 0.4163

DT 2.904 0.0006 0.0057 1.0285

DT
F 2.662 0.0005 0.0005 0.0964

DT
F
c 2.663 0.0003 0.0007 0.0695

RF 2.735 0.0021 0.0022 1.0464

RF
F

2.664 0.0006 0.0006 0.1366

RF
F
c 2.664 0.0007 0.0010 0.0690

When phrased as a regression problem, we see lower Discrimi-

nation scores for both the standard Decision Tree and the Random

Forest, which leaves little room for improvement. When comparing

Discrimination against the binary age threshold (age ≥ 65), and the

MaximumDiscrimination against age, we see the fair variants of our
algorithms perform better than their non-fair counterparts. While

the DT
F
and DT

F
c happen to perform slightly better than their coun-

terparts RF
F
and RF

F
c , the differences are in an epsilon range. Either

way, these results show that we can use our approach for regression

problems and protect both categorical and continuous attributes.

5.4 Visualizing the Impact of Fairness
One of the benefits of tree-based approaches to prediction is the

ability to interpret the models. In particular, we note that one can

measure the relative importance of a feature using a variety of ap-

proaches. Using the Mean Decrease in Impurity (MDI) measure [21],

we show the relative importance of features on the German and

Adult datasets. These are shown in Figure 1 and Figure 2 respec-

tively, where “Fair” is the relative importance of features used by our

Fair Forest induction algorithm and “Standard” indicates the nor-

mal Random Forest induction process using cart-style trees. These

results allow us to see that our simple regularizer can have a wide

range of impact, depending on the dataset and protected attribute.
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Figure 1. Feature importance from German dataset.

On the German dataset in Figure 1, we see a dramatic change in

what the model considers importance, with the the most important

variable being checking-status under the Standardmodel but housing
under the Fair model. For almost all features in this corpus, we see a

reversing of importance: if it was important under the naive model,

it becomes less-so under the Fair model, and vice versa. The only

exception to this being the savings-status attribute, and to some

degree, property-magnitude.
The Adult dataset has a markedly different and surprising behav-

ior. Under both the Fair and Naive model, the relationship attribute

continues to be the most important. However, the Fair model dra-

matically reduces the relative importance of most other features.

Many of these (e.g. capital-loss, capital-gain, education) would likely



0 0.2 0.4 0.6 0.8 1

a
g
e

fi
n
a
l-
w
e
ig
h
t

e
d
u
-
n
u
m

c
a
p
it
a
l-
g
a
in

c
a
p
it
a
l-
lo
s
s

h
o
u
r
s
-
p
e
r
-W

e
e
k

w
o
r
k
c
la
s
s

e
d
u
c
a
ti
o
n

m
a
r
it
a
l-
s
ta
tu
s

o
c
c
u
p
a
ti
o
n

r
e
la
ti
o
n
s
h
ip
r
a
c
eg

e
n
d
e
r

n
a
ti
v
e
-
c
o
u
n
tr
y

Relative Importance

Fair

Standard

Figure 2. Feature importance from Adult dataset.

be features we expect to reliably predict the target attribute, In-

come. While our intuition may be that these variables should be

unbiased and naturally fair predictors, the underlying distribution

of this dataset indicates they were too highly correlated with the

protected Gender attribute, and thus were rarely selected for use.

We expect that the ability to perform such investigation into fea-

ture importance pre/post fairness will become a valuable tool for

those who wish to build fair models in production environments.

Changes in feature importance can give us underlying insights into

non-linear correlations that would escape simple analysis. The in-

formation itself may allow a decision maker to discover deficien-

cies or unintended biases in their data collection process, based on

these unexpected changes. For example, the non-use of the capital-
gain/loss features may tell us that we need to collect more data

specifically from women with capital investments.

5.5 Fairness vs the Mechanism
We now evaluate the ability of our model to reduce Discrimination

for every attribute individually, across each dataset. This helps us

to determine that our approach is not overly specific to the choice

of attributes such as age and gender. To our knowledge this is the

first such evaluation in the fairness literature.

First we train a standard Random Forest, and measure the Dis-

crimination for each attribute using (7) or (8) as appropriate. From

these we record the average and standard deviation of the “Raw”

discrimination. Then we train a new Fair Forest D times for D fea-

tures, testing the model when each feature is selected as the pro-

tected attribute. We then measure the Discrimination of the pro-

tected feature and the accuracy of the resulting model. The mean

and standard deviation are then calculated from the protected fea-

ture Discriminations. The results of this are shown in Table 5.

Across all three datasets and every feature, the Fair Forest ap-

proach was always able to decrease the Discrimination with respect

to the protected attribute. For the German and Health datasets, it

is able to reduce the Discrimination to zero for all features, and al-

ways results in the same accuracy. For the Adult dataset, the orig-

inal protected attribute of Gender was the only attribute which

could be reduced to a Discrimination of zero. The Adult dataset is

Table 5.Discrimination statistics for all features in each dataset. First
row is the Discrimination without any protection. The second row
shows Discrimination when protecting each feature individually,
and third row shows the associated model accuracy.

German Adult Health

µ σ µ σ µ σ

Raw Discrim 0.0081 0.0137 0.2971 0.1652 0.0066 0.0101

Prot. Discrim 0.0000 0.0000 0.1253 0.0776 0.0000 0.0000

Prot. Accuracy 0.7000 0.0000 0.8044 0.0108 0.8474 0.0000

the only one producing a wide impact in the amount of Discrimina-

tion removed, and the resulting accuracy of the model (decreasing

from 0.85 down to 0.80 on average).

6 CONCLUSION
We have developed, to the best of our knowledge, the first fair vari-

ant of the Random Forest algorithm. This Fair Forest can be used for

classification and regression problems, and protected k-category
features as well as numeric attributes, a first in the fairness litera-

ture. In doing so we have extended the measure of discrimination

to these cases. We have shown our method produces state-of-the

art results on three common benchmark datasets, while requiring

no parameter tuning to use, and is able to uniformly reduce Dis-

crimination across any feature in each corpus.
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APPENDIX
A.1 Proof of k-way Discrimination
Here we prove that (6) and (7) are equivalent when k = 2.

To simplify, let the predictive mean for the points T be µ, and
for each subset Ti be µi . Writing out for k = 2 for (7), we get

Discrimination = |µ − µ1 | + |µ − µ2 |
Setting (6) and (7) equal to each other we get

|µ1 − µ2 | = |µ − µ1 | + |µ − µ2 |
Assume, without loss of generality, that µ1 > µ > µ2. In this case

we can use the absolute value to re-write as

|µ1 − µ2 | = |µ1 − µ | + |µ − µ2 |
and then equivalently simplify as

µ1 − µ2 = (µ1 − µ) + (µ − µ2)
µ1 − µ2 = µ1 − µ2 + µ − µ

µ1 − µ2 = µ1 − µ2

.

Thus we obtain the same solution given a fixed ordering of the

µs. The absolute value operation allows us to re-order the contained
terms to match any distinct order of µs. For the case that µ1 = µ2,
then it must be that µ = µ1, and all terms will zero out. Therefor,

we prove that (6) = (7).

A.2 Why Define Gain on Mean over Variance?
We take amoment to further expound uponwhywe have re-written

the gain of numeric attributes with respect to the difference in

means, when the original cart approach uses a criteria based on a

reduction in variance. This original cart splitting condition can be

defined by

argmin

t

1

t

t∑
i=1

t∑
j=1

1

2

(xi − x j )2 +
1

n−t

n∑
i=t+1

n∑
j=t+1

1

2

(xi − x j )2 (10)

Where t is the splitting point, and xi ≤ xi+1. This measures the

sum of weighted variances between the two sets of points. This

could be converted into our normalized gain form. Using the same

notation, this would be

Gv (T ,b) = 1 −
∑

Ti ∈split

|Ti |
|T |

σ 2

b,Ti

σ 2

b,T

(11)

Using (11) would have the desirable property of being equivalent

to the solution found by (10), and thus producing the same trees

when there is no protected attribute. The problem with using this

approach is that it does not align with our fairness goal, and can

fail to produce fair trees when protecting numeric attributes.
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Figure 3. Example of how splitting by variance fails to align with re-
ducing bias. This split would receive a large penalty under a vari-
ance criteria, but both splits have the same mean — resulting in no
discrimination.

To demonstrate how this happens, consider the plot in Figure 3.

Here we show the protected attribute’s value on the x-axis, and
the attribute we are splitting on on the y-axis. Choosing a split of
y ≥ 0.5, we see the data cleanly splits into two groups.
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If we consider the variance-based gain defined by (11), this split

would receive a large penalty. The split dramatically reduces the

variance of the Split 2 group, which produces a large gain. Because

it is the protected attribute, we subtract the gain — and thus a large

penalty is applied.

Note though that the goal is to avoid discrimination in the pre-

dictions produced by the tree. Yet in this case, both splits have the

same mean of zero, only their variances differ. If we were to think

of the problem as predicting the protected attribute’s value from

the tree, we use the mean value of the attribute in the leaf nodes.

The variance is forgotten anyway, and so we are penalizing a split

which will not keep any significant information as it is.

Thus we prefer the intuition afforded by our new gain measure

(5), which would produce no penalty for this split choice. The means

would be the same, and so no predictive difference would occur

with this split. Thus we find this split preferable for the protected

attribute, as it would not aid in distinguishing the protected attribute

at prediction time.
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