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ADbstract Contributions Results

The potential lack of fairness in the outputs of machine learning
algorithms has recently gained attention both within the research
community as well as in society more broadly. Surprisingly, there .
is no prior work developing tree-induction algorithms for building

fair decision trees or fair random forests. These methods have wide-

spread popularity as they are one of the few to be simultaneously

* Introduce a new learning algorithm to produce fair Decision * Comparisons with:
Trees and Random Forests
Define new measures of discrimination for:
 Multinomial features
e Continuous features

* Regression problems

* Using these canonical datasets (Zemel, et al. 2013):

Baselines: Decision Trees (DT), Random Forests (RF),
Logistic Regression (LR)

* German Credit (protect age = 25) .

* Adult Income (protect gender)

* Heritage Health (protect age = 65) * Learned Fair Representations (LFR; Zemel et al., 2013)

* Fair Logistic Regression (LRF; Kamishima et al., 2011)

------------ (Our techniques) .

interpretable, non-linear, and easy-to-use. In this paper we develop, * Present a new evaluati.on procedure to assess fairness with Fair Naive Bayes (NB'; Kamiran & Calders, 2009).

to our knowledge, the first technique for the induction of fair respect to all features in a dataset German Credit Adult Tncome Heritage Health

decision trees. We show that our "Fair Forest" retains the benefits The fai . - , - —— —— —

of the trec-based approach, while providing both greater accuracy e fair Dec.lsl’:on Tree; (F)T ) & falr Random Forests (RFF) Acc Delta  Discrim  Incon Acc Delta  Discrim  Incon Acc Delta  Discrim  Incon

and fairness than other alternatives, for both “group fairness” and f’ml\‘ljucelfj WIth our technique are: DT  0.6890 0.6509 0.0381 0.2140 0.8364 0.4801  0.3563 0.4417 0.8404 0.8196  0.0207  0.2062

“individual fairness.” We also introduce new measures for fairness . Infc):r-pl:le?c:rble ------------ DTE  0.6990 0.6908  0.0082 0.0070 0.7511  0.7444  0.0067 0.0033 0.8474 0.8473  0.0001  0.0001

which are able to handle multinomial and continues attributes as + Easy to to use (no parameter tuning required) RF 0.6970 0.6911  0.0059  0.0020 0.8501 0.5463  0.3038 0.3944 0.8472  0.8464  0.0007  0.0005

well as regression problems, as opposed to binary attributes and + Applicable to numeric features & classes RFY 0.7000 0.7000 0.0 0.0 0.7530  0.7530 0.0 0.0 0.8474 0.8474 0.0 0.0

labels only. Finally, we demonstrate a new, more robust evaluation + Achieve high accuracy NBY 0.6888 0.6314 0.0574 0.3132 0.7847 0.7711 0.0136 0.4366 0.6878 0.5678  0.1200  0.4107

procedure for algorithms that considers the dataset in its entirety + Achieve high group fairness LR 0.6790 0.5517  0.1273  0.3050 0.6787  0.4895  0.1892  0.2703 0.7547  0.6482  0.1064  0.2767

rather than only a specific protected attribute. « Achieve high individual fairness LRY 0.5953 0.5842 0.0111 0.1284 0.6758 0.6494  0.0264 0.2234 0.7212 0.7038  0.0174  0.3777
LFR  0.5909 0.5867  0.0042 0.0592 0.7023 0.7Y018  0.0006 0.1892 0.7365 0.7365 0.0000 0.0000

Binary protected features & binary target (See table above) Continuous protected feature & binary target  (Results in paper)

Tree Induction Algorithm

* Fair Forests (RFF) reduce discrimination & inconsistency to zero

2
L =2 vr, esplits(a) (|| ) * Fair Forests achieve the lowest discrimination &
| _ —1 inconsistency on all three datasets

* Fair Forests can protect a numeric feature directly without
* Goal: make decisions that are accurate but not based on discretization

protected attributes such as race, gender or age

T; |
T

IGini(T) = * Protected attribute is binary in all prior work we found

splits(a)|

* “Fairness through unawareness” is insufficient | S | , * Accuracy improves compared to standard RF on two datasets * Test on German & Health datasets, where protected
* Even if the protected attribute is completely removed G is defined via Gini impurity, which can be calculated based on ' ' attribute (age) was originally numeric
P P , Y splitting the protecting attribute a, not the target value y, as is standard. * For the German Credit & Heritage Health datasets, & 5 Y
from the dataset, other features may be highly there is no cost-of-fairness when using Fair Forests » Continuous version of Fair Forests was also able to reduce

correlated with it and function as proxies * We can use the same IGg,;, splitting criteria when
constructing Random Forests
They maintain the benefits of standard DTs/RFs:

* Easy to use: no hyperparamaters to tune

* This is not the case when using LR & LRF discrimination & inconsistency to zero

 Caution: we do not expect there to be no cost-of-
fairness in general, for this or any other technique

 Standard decision trees pick features based on Information
Gain (1G), i.e. “how easy does this feature make it to predict .
the target?”

* No loss of accuracy compared to standard RF
Continuous Target (Results in paper)

 Switching from standard DT to standard RF reduces
discrimination and inconsistency by itself

* Can also use Fair Forests for regression problems

« We introduce a new criteria to choose tree nodes: + Not a black box: easy to interpret & explain

« DTF & RFF perform just as well with continuous targets

G (T,0) = IGY(T,b) — IG*(T, ) * Powerful: can learn non-linear decision boundaries
I e Also define IG with respect to protected numericfeatures ----------------- Interjretablllty & Featlll'e Importance FUll EValuathl’l PI’OC€SS
"""""" IG with respect to the target * No need to select threshold to discretize features % = R || * Evaluate Fair Forests’ ability to protect any attribute, not just
. . . O . . .
| Aunus | * Can provide fairness w.r.t. any potential threshold e = Standard || the ones pre-identified as sensitive
IG with respect to the protected attribute - F TR — . First time this has been done
. Thi - - ' 1 Tl e — S *
This chooses features YVthh make it easy t.O P"ed’Ct the GT (T, b) =1- § Z CZ;L min ( ,3 -------------- @\‘i@\l& - o Strong demonstration of robustness
target, but hard to predict the protected attribute T, Esplit T Ob,T FES - . . .
' S . * Future-proofing: if we decide to eschew discrimination
: TG - w.r.t. new & different features, we’ll be ready
Metrics R i . . o . .
AN .  This evaluation technique is applicable to other fairness
. N SCASHS 3 algorithms, not just ours
* Discrimination (a.k.a. “group fairness”) L 2 o ijeT Yj ijeTi Yj N 0&«%‘ - 5 .y J. . . .
. Diff bet dicted ‘ " Discrimination = A Z T — )] @&fb@g | | | - *  We can reduce discrimination to zero for any attribute in the
ifference between average predicted scores for eac — i o 0 0.2 04 0.6 0.3 1 German Credit & Heritage Health datasets
protected attribute value Relative importance, Adult Income dataset dth | t th
. _— _ . 5 9 * ... and the accuracy always comes out the same.
* Previous definitions are limited to binary features MaxD — Z:Lx,;(ap)<t Yi in(ap)zt Yi * Examine which features were selected by RF vs. RFF 4 Y S
. We extend to attributes with > values axl) = arg ;max () < 1] — () > 1] Cender i | * For the Adult Income dataset, zero discrimination is
utes W vaiu e P = ender importance goes to zero (yay:) only possible for gender, but discrimination is halved

 Also extend to continuous target variables for
regression problems (“MaxD”)

Capital-gain and capital-loss importance also go to zero

on average when considering all features.

* Inconsistency (a.k.a. “individual fairness”)  Too highly correlated w/ gender? Problem w/ data

i Slmllar Samples ShOUld reCEive Similar OutputS Collection? Deeper Societal iSSue?

* No need to discretize outputs

* These two definitions can be used to evaluate any fair * Accuracy .

learning algorithms in the future .

RFF can tells us if something interesting is going on
even if we don’t want to use it to make final decisions
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Delta = Accuracy — Discrimination



