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Abstract
No methods currently exist for making arbitrary
neural networks fair. In this work we introduce
GRAD, a new and simplified method to produc-
ing fair neural networks that can be used for auto-
encoding fair representations or directly with pre-
dictive networks. It is easy to implement and add
to existing architectures, has only one (insensitive)
hyper-parameter, and provides improved individ-
ual and group fairness. We use the flexibility of
GRAD to demonstrate multi-attribute protection.

1. Introduction
Artificial Neural Network methods are quickly becoming
ubiquitous in society, spurred by advances in image, signal,
and natural language processing. This pervasiveness leads
to a new need for considering the fairness of such networks
from many perspectives, including: how they are used, who
can access them and their training data, and potential biases
in the model itself. There are many reasons for desiring fair
classification algorithms. These include legal mandates to
be non-discriminative, ensuring a moral or ethical goal, or
for use as evidence in legal proceedings (Romei & Ruggieri,
2014). Despite the long-standing need and interest in this
problem, there are few methods available today for training
fair networks.

When we say that a network is fair, we mean fair with respect
to a protected attribute ap, such as age or gender. Our desire
is that a model’s predicted label ŷ given a feature vector x
is invariant to changes in ap. An initial reaction may be to
simply remove ap from the feature vector x. While intuitive,
this “fairness through unawareness” does not remove the
correlations with ap that exist in the data, and so the result
will still produce a biased model (Pedreshi et al., 2008).

For this reason we need to devise approaches that explic-
itly remove the presence of ap from the model’s predictions.
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We do so in this work by introducing a new method to train
fair neural networks. Our approach, termed Gradient Re-
versal Against Discrimination (GRAD), makes use of a net-
work which simultaneously attempts to predict the target
class y and protected attribute ap. The key is that the gradi-
ents resulting from predictions of ap are reversed before be-
ing used for weight updates. The result is a network which
is capable of learning to predict the target class but effec-
tively inhibited from being able to predict the protected at-
tribute. GRAD displays competitive accuracy and improved
fairness when compared to prior approaches. GRAD’s ad-
vantage comes from increased simplicity compared to prior
approaches, making it easier to apply and applicable to a
wider class of networks. Prior works in this space are lim-
ited to one attribute (but see Zafar et al., 2017) and require
the introduction of multiple hyper-parameters. These pa-
rameters must be cross-validated, making the approaches
challenging to use. Further, our approach can be used to
augment any current model architecture, where others have
been limited to auto-encoding style architectures.

2. Gradient Reversal Against Discrimination
We now present our new approach to developing neural
networks that are fair with respect to some protected at-
tribute. We call it Gradient Reversal Against Discrimination
(GRAD), and is inspired by recent work in transfer learning.
Notably, Ganin et al. (2016) introduced the idea of domain
adaptation by attempting to jointly predict a target label and
a domain label (i.e., which domain did this data instance
come from?). By treating the protected attribute as the new
domain, we can use this same approach to instead prevent
the network from being biased by the protected attribute ap.

After several feature extraction layers the network forks.
One branch learns to predict the target y, while the other
attempts to predict the protected attribute ap. We term the
portion of the network before the splitting point the “trunk,”
and those portions after the “target branch” and the “attribute
branch.” The final loss of the network is sum of the losses of
both branches, giving `(y, ap) = `t(y)+λ · `p(ap). Here, λ
determines the relative importance of fairness compared to
accuracy. In practice, we find that performance is insensitive
to particular choices of λ, and any value of λ ∈ [50, 2000]
would perform equivalently. In our experiments we will use
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Figure 1. Diagram of GRAD architecture. Red connection indi-
cates normal forward propagation, but back-propagation will re-
verse the signs.

λ = 100 without any kind of hyper-parameter optimization.

The values of both `t(y) and `p(ap) are calculated and used
to determine gradients for weight updates as usual, with
one important exception. When the gradients have been
back-propagated from the attribute branch they are reversed
(i.e., multiplied by −1) before being applied to the trunk.
This moves the trunk’s parameters away from optima in
predictions of ap, crippling the ability to correctly output the
protected attribute. Since the target branch also depends on
the trunk parameters, it inherits this inability to accurately
output the value of the protected attribute. No such reversal
is applied to the gradients derived from y, so the network’s
internal state representations are suitable for predicting y
but nescient of ap.

It is instructive to consider why it may be insufficient to set
up a loss function which directly punishes the network for
correctly predicting ap. If this were the case, the network
could achieve low loss by forming internal representation
which are very good at predicting the protected attribute,
and then “throw the game” by simply reversing the correct
prediction in the penultimate layer. (That is, a potential,
reliable strategy to getting the wrong answer is to become
very good at getting the right answer, and then lying about
what one thinks the answer should be.) If this strategy
is adopted then the representations necessary for correctly
recovering ap from x would be available to the target branch
when making its prediction of y, which is the situation we
aim to prevent.

Architecture Variants

As mentioned above, many of the other neural approaches
to fair classification take an autoencoder or representation
learning approach. This approach has its advantages. For
instance, it allows the person constructing the fair model to
be agnostic about the ultimate task that it will be applied to.
Others like ALFR consider a target value directly, and so
can not be re-used for other tasks, but may perform better in
practice on the specific problem they were constructed for.

Our GRAD approach, thanks to its comparative simplicity,

can be used in both formulations. This makes it the only
neural network-based approach to fairness that offers both
task flexibility and specificity.

GRAD-Auto will designate our approach when using an
auto-encoder as the target branch’s loss. That is, if x is the in-
put feature, x̃ will be the feature vector derived from x such
that the protected attribute ap /∈ x̃. We then use `Auto

t (·) =
||htarget − x̃||22 as the loss function for the target branch,
where htarget is the activation vector from the last layer of
the target branch. This approach is in the same style as LFR
and VFA, where a hidden representation invariant to ap is
learned, and then Logistic Regression is used on the outputs
from the trunk sub-network to perform classification.

GRAD-Pred will designate our task-specific approach,
where we use the labels yi directly. Here we simply use the
standard logistic loss `Pred

t (·) = log(1 + exp(−y · htarget)).
In this case the target branch of the network will produce a
single activation, and the target branch output itself is used
as the classifier directly.

Since we are dealing with binary protected attributes, both
GRAD-Auto and GRAD-Pred will have the attribute branch
of the network use `p(ap) = log(1 + exp(−ap · hattribute)).

In the spirit of minimizing the effort needed by the practi-
tioner, we do not perform any hyper-parameter search for
the network architecture either. Implemented in Chainer
(Tokui et al., 2015) we use two fully-connected layers for ev-
ery branch of the network (trunk, target, & attribute) where
all hidden layers have 40 neurons. Each layer will use batch-
normalization followed by the the ReLU activation function.
Training is done using the Adam optimizer for gradient de-
cent. We emphasize that the heart of GRAD is the inclusion
of the attribute branch with reversed gradient; this technique
is flexible enough to be used regardless of the particular
choices of layer types, sizes, etc. We train each model for
50 epochs, and use a validation set to select the model from
the best epoch. We define best by the model having the low-
est Discrimination (see §3.1) on the validation set, breaking
ties by selecting the model with the highest accuracy. When
multiple attributes are protected, we use the lowest average
Discrimination.

3. Methodology
There is currently ongoing debate about what it means
for a machine learning model to be fair. We choose to
use the same evaluation procedure laid out by Zemel et al.
(2013). This makes our results comparable with a larger
body of work, as their approach and metrics have been
widely used through the literature (e.g., Landeiro & Culotta,
2016; Bechavod & Ligett, 2017; Dwork et al., 2017). We
use the same evaluation procedure and metrics: Discrimina-
tion, Consistency, Delta, and Accuracy.
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3.1. Metrics

Given a dataset {x1, . . . , xn} ∈ D, we define the ground
true label for the ith datum as yi and the model’s prediction
as ŷi. Each are with respect to the binary target label y ∈
{0, 1}. While we define both yi and ŷi, we emphasize that
only the predicted label ŷi is used in the fairness metrics.
This is because fairness is not directly related to accuracy
by equality of treatment.

Discrimination is a macro-level measure of “group” fairness,
and computed by the taking the difference between the
average predicted scores for each attribute value, assuming
ap is a binary attribute.

Discrimination =

∣∣∣∣∣
∑
xi∈Tap

ŷi

|Tap |
−

∑
xi∈T¬ap

ŷi

|T¬ap |

∣∣∣∣∣ (1)

The second metric is Consistency, which is a micro-level
measure of “individual” fairness. For each xi ∈ D, we
compare its prediction yi with the average of its k nearest
neighbors and take the average of this score across D.

Consistency = 1− 1

N

N∑
i=1

∣∣∣∣∣∣ŷi − 1

k

∑
j∈k-NN(xi)

ŷj

∣∣∣∣∣∣ (2)

Because Consistency and Discrimination are independent of
the actual accuracy of the method used, we also consider the
Delta = Accuracy − Discrimination. This gives a combined
measure of an algorithm’s accuracy that penalizes it for
biased predictions.

We use these metrics in the same manner and on the same
datasets as laid out in Zemel et al. (2013) so that we can
compare our results with prior work. This includes using the
same training, validation, and testing splits. When training
our GRAD approaches, we perform 50 epochs of training,
and select the model to use from the validation performance.
Specifically, we choose the epoch that had the lowest dis-
crimination and broke ties by selecting the highest accuracy.

3.2. Models Evaluated

As a baseline for comparison against GRAD-Pred and
GRAD-Auto, we will consider the same architecture but
with the attribute branch removed. This produces a standard
neural network, and will be denoted as NN. For compari-
son with other fairness-seeking neural network algorithms,
we present prior results for Learning Fair Representations
(LFR) (Zemel et al., 2013), Variation Fair Autoencoders
(VFA) (Louizos et al., 2016), and Adversarial Learned Fair
Representations (ALFR) (Edwards & Storkey, 2016) ap-
proaches. For all models on all datasets, we report the met-
rics as presented in their original publications, as we were
unable to replicate VFA and ALFR’s results.

4. Results
The results are given in Table 1. For values unreported in
their original work, we show a dash (“—”) in the table. Our
GRAD approach is shown in the top rows. The bottom
three rows include the other approaches as explained in
subsection 3.2.

When we compare the standard neural network (NN) with
its GRAD counterpart, we can see that the GRAD approach
always increases the Delta and Consistency scores, and
reduces the Discrimination. This shows its applicability
across network types (classifying and auto-encoding). We
can even see the GRAD approach improve accuracy on the
Adult dataset by 5 percentage points. While we would not
expect this behavior (i.e. a negative cost of fairness) in the
general case, it is nonetheless interesting and it may indicate
the protected attribute allows overfitting.

Comparing the GRAD algorithms to the other neural net-
works LFR, VFA and ALFR, we see that GRAD is usually
best or 2nd best in each metric. On both the German and
Adult datasets, it achieves the best Discrimination and Con-
sistency scores compared to any of the algorithms tested.
On the German dataset VFA obtains a higher Delta score
by having a high accuracy, though VFA has 4% discrimi-
nation compared to GRAD-Pred’s 0.06%. On the Health
dataset, GRAD-Auto and GRAD-Pred have near identical
results.This is overall significantly better than the LFR ap-
proach which has an 11 percentage point difference in Ac-
curacy and Delta scores compared to the GRAD approaches.
The VFA algorithm is similarly within a fractional distance,
though Consistency is not reported for VFA.

GRAD consistently produces the highest Consistency. On
the Adult dataset where VFAE and ALFR get better accu-
racy, it may have come at a cost of lower Consistency. This
couldn’t be confirmed since we could not replicate their re-
sults.

4.1. Multiple Protected Attributes

In almost all prior works that we are aware, it is always
assumed that there is only one attribute that needs to be
protected. However, this is a myopic view of the world. All
of the protected attributes that have been tested individually
in this work, like age, race and gender, may all co-occur and
interact with each other. We show this in Table 2 using the
Diabetes dataset used in Edwards & Storkey (2016), which
has both Race and Gender as features in the corpus. In
this case GRAD-Pred and GRAD-Auto are protecting Race
and Gender attributes. GRAD-Pred-R shows the results
for protecting only Race, and GRAD-Pred-G shows for
only protecting Gender. GRAD-Auto follows the same
convention.

Since Discrimination is computed with respect to specific
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Table 1. For each dataset we show Accuracy, Delta, Discrimination, and Consistency. Best results shown in bold, second best in italics.

German Adult Health

Algorithm Acc Delta Discr Cons Acc Delta Discr Cons Acc Delta Discr Cons

NN-Auto 0.7350 0.5334 0.2016 0.8730 0.7635 0.7191 0.0444 0.9850 0.8506 0.7939 0.0567 0.9730
GRAD-Auto 0.6750 0.6296 0.0454 0.8705 0.7554 0.7452 0.0102 0.9924 0.8491 0.8491 0.0000 1.0000
NN-Pred 0.7500 0.3637 0.3863 0.6945 0.7022 0.6268 0.0754 0.8168 0.8440 0.7511 0.0929 0.9453
GRAD-Pred 0.6750 0.6744 0.0006 0.9705 0.7543 0.7543 0.0000 1.0000 0.8493 0.8486 0.0007 0.9999

LFR 0.5909 0.5867 0.0042 0.9408 0.7023 0.7018 0.0006 0.8108 0.7365 0.7365 0.0000 1.0000
VFAE 0.7270 0.6840 0.0430 — 0.8129 0.7421 0.0708 — 0.8490 0.8490 0.0000 —
ALFR — — — — 0.8251 0.8241 0.0010 — — — — —

Table 2. Accuracy, Delta, Discrimination (with respect to Race and
Gender), and Consistency for our new method on the Diabetes
dataset. Last four rows show GRAD models when only Race (R)
or Gender (G) are protected.

Discrimination

Algorithms Acc Delta Race Gender Cons

NN-Auto 0.5735 0.5392 0.0412 0.0275 0.6411
GRAD-Auto 0.5765 0.5723 0.0055 0.0030 0.6288
NN-Pred 0.6286 0.5848 0.0418 0.0458 0.6464
GRAD-Pred 0.5980 0.5949 0.0028 0.0034 0.7180

GRAD-Auto-R 0.5851 0.5749 0.0003 0.0201 0.6404
GRAD-Auto-G 0.5640 0.5143 0.0981 0.0013 0.6093
GRAD-Pred-R 0.5844 0.5478 0.0020 0.0713 0.7538
GRAD-Pred-G 0.5941 0.5526 0.0785 0.0045 0.6849

attributes, in the table we show the discrimination scores
with respect to both of the protected attributes. Since we
have two protected attributes ap1 and ap2 , we compute Delta
= Accuracy −( Discrimination(ap1) + Discrimination(ap2)
)/2. In doing so, we can see that when two protected vari-
ables are present, the GRAD approach is able to reduce Dis-
crimination and increase Delta for both the Autoencoder
and the standard softmax predictive network. GRAD-Pred
also continues to increase the Consistency with respect to
the naive neural network.

Comparing GRAD-Pred with GRAD-Pred-R and GRAD-
Pred-G is also critical to show that protecting both attributes
simultaneously provides a significant benefit. On the Di-
abetes data, we see the model increase its discrimination
with respect to Gender when only Race is protected. Simi-
larly, when we protect Gender, discrimination with respect
to Race increases. Explicitly protecting both is the only safe
way to reduce discrimination on both.

The model shifting to leverage other protected features is
not surprising. When we penalize a feature which provides
information, the model must attempt to recover discrimi-
native information in other (potentially non-linear) forms
from the other features. Thus the importance and utility of
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Figure 2. Plots show the performance of GRAD-Pred as a function
of λ on the x-axis (log scale). A dashed vertical black line shows
the value λ = 100 used in all experiments.

GRAD to protect both simultaneously is established.

4.2. Robustness to λ

We have discussed so far that a benefit of the GRAD ap-
proach is a simplicity in application due to the having only
one hyper-parameter λ. We now show that this value λ is
largely robust to the value used. In Figure 2 we plot the Ac-
curacy, Discrimination, and Consistency as a function of λ
for values in the range [1, 2000], which shows GRAD’s con-
sistent behavior. On the Adult dataset, we see results sta-
bilize after λ ≥ 10. The Health dataset looks flat through
the entire plot since the variation is on the order of 10−3,
making it indiscernible. Only the Adult and Health plots are
shown due to space limitations. The Diabetes plot is similar,
and the German dataset has more variability due to its small
size (n = 1000).

5. Conclusions
We have introduced GRAD, a flexible approach for building
fair neural networks that can be used to augment any general
neural network, and does not mandate the auto-encoding
approach of prior work or the use of cumbersome additional
hyper-parameters. GRAD is competitive with prior work,
can protect multiple attributes, and often delivers superior
fairness through low discrimination.
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