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Problem: Searching for Weighted Sets

For a given document d in some set of documents D, we want to be
able to find similar documents quickly.
Total number of possible features F may be large, so we need to
minimize both compute and storage costs.
Each feature z ∈ d will have some weight associated with it. If
w(d, z) ≥ 0 is the weight of the feature, we’ll use the Weighted
Jaccard Similarity as our metrics (1).
How do we make this as fast and space efficient as possible?

WJS(S,O) =

∑
∀z∈S∪O min(w(S, z), w(O, z))∑
∀z∈S∪O max(w(S, z), w(O, z)))

(1)
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Min-Hash Approach!

Let’s use Min-Hashing to create compact representations of our
documents! We choose a hash size K to trade off between accuracy and
speed/storage.

Algorithm 1 MinHash Approximation

Require: Two sets S and O that we want to compute the similarity of.
1: s← 0
2: for k ∈ 1, 2, . . . ,K do
3: if Minhash(S, k) = Minhash(O, k) then
4: s← s+ 1
5: end if
6: end for
7: return s/K
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ICWS Algorithm

The Improved Confidence Weighted Sampling (ICWS) [1] is the
seminal algorithm for this problem.
Computing the ICWS Min-Hash is expensive.

Requires O(KD) steps per datapoint
Each step requires five logarithms, two exponentiations, and four
multiplications/divisions

Benefit is provably accurate results, but results are not useful if we
can’t apply the algorithm.
We want to work towards applications that have millions of
features per document [3].
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Introducing Simplified Consistent Weighted Sampling

Li [2] showed that the second half of the ICWS hash could be
thrown away with minimal impact on accuracy. This reduces
memory usage by half, but does the same amount of work.
Our idea: carry Li’s work further. If we are throwing away the
second part of the hash, let’s exploit that to simplify the whole
procedure.
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ICWS with Zero Bits

Algorithm 2 Zero-Bit ICWS [1]

1: procedure Minhash(Weighted Set S, hash index k)
2: for all z ∈ S do
3: Seed PRNG with tuple (z, k)
4: rz ∼ Gamma(2, 1)
5: cz ∼ Gamma(2, 1)
6: βz ∼ Uniform(0, 1)

7: tz ←
⌊
logw(S,z)

rz
+ βz

⌋
8: yz ← exp(rz(tz − βz))
9: az ← cz

yz exp(rz)
10: end for
11: z∗ ← argminz az
12: y∗ ← yz∗

13: return z∗ . We dropped tz∗ following [2]
14: end procedure
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Simplified Consistent Weighted Sampling

Intuition
Normal ICWS uses the tuple (z∗, tz∗) as its hash, and the Zero-Bit
version just drops the tz∗ portion. If we can obtain similar results
without tz∗ , why compute it at all?

If we remove the floor operation b·c, we can simplify the math
dramatically. We lose the proof and we may change the results, but
does it matter?

yz = exp

(
rz

(
logw(S, z)

rz
+ βz − βz

))
= exp

(
rz

(
logw(S, z)

rz

))
= exp (logw(S, z)) = w(S, z)
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Partial Simplification

Down to just one exponentiation and two multiplications/divisions.
However, four samples from the uniform distribution and an additional
four logarithms are still needed to produce cz and rz.

1: procedure Minhash(Weighted Set S, hash index k)
2: for all z ∈ S do
3: Seed PRNG with tuple (z, k)
4: rz ∼ Gamma(2, 1)
5: cz ∼ Gamma(2, 1)
6: az ← cz

exp(rz)
w(S, z)−1

7: end for
8: z∗ ← argminz az
9: y∗ ← yz∗

10: return z∗

11: end procedure
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Simplification, Step 2

Brainwave!
The term cz

exp(rz)
is now independent of the value of w(S, z)−1! If we can

sample from the random distribution defined by this term directly, we
can make life even easier.

Define a pool T of values pre-sampled from the distribution cz
exp(rz)

Pool can be fixed at compile-time and re-used for any input.
Select a value from the pool based on the tuple (z, k)

Gets us down to just one FLOP per hash.
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SCWS Algorithm

Algorithm 3 Simplified CWS (SCWS)

Require: An array T of length |T |, where T [i] ∼ cz exp(−rz), and large
primes p1 and p2

1: procedure Minhash(Weighted Set S, hash index k)
2: b← k · p2
3: for all z ∈ S do
4: γ ← (z · p1 + b) mod |T | . LCG style index selection
5: az ← w(S, z)−1 · T [γ] . The only FLOP needed
6: end for
7: z∗ ← argminz az
8: return z∗

9: end procedure
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Evaluating SCWS

We have developed a new algorithm for the weighted min-hash
problem. How well does it work? We test this empirically since we lack
a bound on its ability.

How well does this work for word-similarity benchmark?
As a feature set for learning classification problems?
Precision at returning nearest neighbors in a search?
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Word Similarity, with respect to sketch size K
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Figure 1: Difference between each CWS algorithm, and the true WJS. The
dotted black line shows the value of zero for a perfect estimate and our new
SCWS is in red. Above each figure is the word-pair under test, with the true
WJS.
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Word Similarity, with respect to sketch time (ms)
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Figure 2: Same as 1, but x-axis replaced with average time to construct the
sketch (in milliseconds).
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Classification, Accuracy
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Figure 3: Performance of linear models built from CWS algorithms, compared
to a linear and kernel SVM. The x-axis C shows the regularization
parameter’s value, and the y-axis shows the accuracy of 5-fold cross validation.
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Speedup

Table 1: D Indicates the dimension of the dataset, and ‘Density’ the
percentage of non-zero values in the corpus. The right-most column shows
how many times faster SCWS was.

Time to Hash (seconds)

Dataset D Density ICWS ICWS-0Bit SCWS Speedup

a9a 123 11.3 186 185 9 19.9
cod-rna 8 99.8 106 107 11 9.0
covtype 54 22.1 160 160 12 13.1
MNIST 780 19.2 1,937 1,922 86 22.1
ijcnn1 22 59.1 173 175 22 7.7
w8a 300 3.9 161 162 10 15.4
RCV1 47,236 0.14 661 658 52 12.6
URL 3,231,961 0.004 1,516 1,491 105 14.6
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Search Precision
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Conclusions

SCWS performs about as well as ICWS. Sometimes better,
sometimes worse, sometimes the same.
SCWS is usually at least 10x faster, up to 22x.
SCWS lacks the same theory and backing; might not be
appropriate for all cases.
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Questions?

raff_edward@bah.com
@EdwardRaffML

sylvester_jared@bah
@jsylvest

nicholas@umbc.edu
What’s Twitter?

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 18 / 19



References I

Sergey Ioffe. “Improved Consistent Sampling, Weighted Minhash
and L1 Sketching”. In: Proceedings of the 2010 IEEE International
Conference on Data Mining. ICDM ’10. Washington, DC, USA:
IEEE Computer Society, Dec. 2010, pp. 246–255. isbn:
978-0-7695-4256-0. doi: 10.1109/ICDM.2010.80. url:
http://ieeexplore.ieee.org/document/5693978/%20http:
//dx.doi.org/10.1109/ICDM.2010.80.

Ping Li. “0-Bit Consistent Weighted Sampling”. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’15. New York, NY, USA: ACM,
2015, pp. 665–674. isbn: 978-1-4503-3664-2. doi:
10.1145/2783258.2783406. url:
http://doi.acm.org/10.1145/2783258.2783406.

https://doi.org/10.1109/ICDM.2010.80
http://ieeexplore.ieee.org/document/5693978/%20http://dx.doi.org/10.1109/ICDM.2010.80
http://ieeexplore.ieee.org/document/5693978/%20http://dx.doi.org/10.1109/ICDM.2010.80
https://doi.org/10.1145/2783258.2783406
http://doi.acm.org/10.1145/2783258.2783406


References II

Edward Raff and Charles Nicholas. “Malware Classification and
Class Imbalance via Stochastic Hashed LZJD”. In: Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security.
AISec ’17. New York, NY, USA: ACM, 2017, pp. 111–120. isbn:
978-1-4503-5202-4. doi: 10.1145/3128572.3140446. url:
http://doi.acm.org/10.1145/3128572.3140446.

https://doi.org/10.1145/3128572.3140446
http://doi.acm.org/10.1145/3128572.3140446

	Introduction
	Simplified CWS 

	Evaluation
	Word Similarity 
	Search Precision

	Conclusion

