
Engineering a Simplified 0-Bit Consistent Weighted
Sampling

Edward Raff1,2 Jared Sylvester1 Charles Nicholas2

1Booz Allen Hamilton
2Univ. of Maryland, Baltimore County

October 25, 2018

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 1 / 19

Problem: Searching for Weighted Sets

For a given document d in some set of documents D, we want to be
able to find similar documents quickly.
Total number of possible features F may be large, so we need to
minimize both compute and storage costs.
Each feature z ∈ d will have some weight associated with it. If
w(d, z) ≥ 0 is the weight of the feature, we’ll use the Weighted
Jaccard Similarity as our metrics (1).
How do we make this as fast and space efficient as possible?

WJS(S,O) =

∑
∀z∈S∪O min(w(S, z), w(O, z))∑
∀z∈S∪O max(w(S, z), w(O, z)))

(1)

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 2 / 19

Min-Hash Approach!

Let’s use Min-Hashing to create compact representations of our
documents! We choose a hash size K to trade off between accuracy and
speed/storage.

Algorithm 1 MinHash Approximation

Require: Two sets S and O that we want to compute the similarity of.
1: s← 0
2: for k ∈ 1, 2, . . . ,K do
3: if Minhash(S, k) = Minhash(O, k) then
4: s← s+ 1
5: end if
6: end for
7: return s/K

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 3 / 19

ICWS Algorithm

The Improved Confidence Weighted Sampling (ICWS) [1] is the
seminal algorithm for this problem.
Computing the ICWS Min-Hash is expensive.

Requires O(KD) steps per datapoint
Each step requires five logarithms, two exponentiations, and four
multiplications/divisions

Benefit is provably accurate results, but results are not useful if we
can’t apply the algorithm.
We want to work towards applications that have millions of
features per document [3].

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 4 / 19

Introducing Simplified Consistent Weighted Sampling

Li [2] showed that the second half of the ICWS hash could be
thrown away with minimal impact on accuracy. This reduces
memory usage by half, but does the same amount of work.
Our idea: carry Li’s work further. If we are throwing away the
second part of the hash, let’s exploit that to simplify the whole
procedure.

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 5 / 19

ICWS with Zero Bits

Algorithm 2 Zero-Bit ICWS [1]

1: procedure Minhash(Weighted Set S, hash index k)
2: for all z ∈ S do
3: Seed PRNG with tuple (z, k)
4: rz ∼ Gamma(2, 1)
5: cz ∼ Gamma(2, 1)
6: βz ∼ Uniform(0, 1)

7: tz ←
⌊
logw(S,z)

rz
+ βz

⌋
8: yz ← exp(rz(tz − βz))
9: az ← cz

yz exp(rz)
10: end for
11: z∗ ← argminz az
12: y∗ ← yz∗

13: return z∗ . We dropped tz∗ following [2]
14: end procedure
Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 6 / 19

Simplified Consistent Weighted Sampling

Intuition
Normal ICWS uses the tuple (z∗, tz∗) as its hash, and the Zero-Bit
version just drops the tz∗ portion. If we can obtain similar results
without tz∗ , why compute it at all?

If we remove the floor operation b·c, we can simplify the math
dramatically. We lose the proof and we may change the results, but
does it matter?

yz = exp

(
rz

(
logw(S, z)

rz
+ βz − βz

))
= exp

(
rz

(
logw(S, z)

rz

))
= exp (logw(S, z)) = w(S, z)

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 7 / 19

Partial Simplification

Down to just one exponentiation and two multiplications/divisions.
However, four samples from the uniform distribution and an additional
four logarithms are still needed to produce cz and rz.

1: procedure Minhash(Weighted Set S, hash index k)
2: for all z ∈ S do
3: Seed PRNG with tuple (z, k)
4: rz ∼ Gamma(2, 1)
5: cz ∼ Gamma(2, 1)
6: az ← cz

exp(rz)
w(S, z)−1

7: end for
8: z∗ ← argminz az
9: y∗ ← yz∗

10: return z∗

11: end procedure

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 8 / 19

Simplification, Step 2

Brainwave!
The term cz

exp(rz)
is now independent of the value of w(S, z)−1! If we can

sample from the random distribution defined by this term directly, we
can make life even easier.

Define a pool T of values pre-sampled from the distribution cz
exp(rz)

Pool can be fixed at compile-time and re-used for any input.
Select a value from the pool based on the tuple (z, k)

Gets us down to just one FLOP per hash.

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 9 / 19

SCWS Algorithm

Algorithm 3 Simplified CWS (SCWS)

Require: An array T of length |T |, where T [i] ∼ cz exp(−rz), and large
primes p1 and p2

1: procedure Minhash(Weighted Set S, hash index k)
2: b← k · p2
3: for all z ∈ S do
4: γ ← (z · p1 + b) mod |T | . LCG style index selection
5: az ← w(S, z)−1 · T [γ] . The only FLOP needed
6: end for
7: z∗ ← argminz az
8: return z∗

9: end procedure

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 10 / 19

Evaluating SCWS

We have developed a new algorithm for the weighted min-hash
problem. How well does it work? We test this empirically since we lack
a bound on its ability.

How well does this work for word-similarity benchmark?
As a feature set for learning classification problems?
Precision at returning nearest neighbors in a search?

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 11 / 19

Word Similarity, with respect to sketch size K

100 101 102 103

0

5 · 10−2

0.1

B
ia
s

IBM-PC: 0.107

SCWS
ICWS
ICWS-0Bit

100 101 102 103

−1

0

1

2

·10−2 Apple-Microsoft: 0.020

100 101 102 103

0

1

2

·10−2 Car-Bike: 0.025

100 101 102 103

−2

0

2

4

·10−2

B
ia
s

Subsidies-Settlements: 0.040

100 101 102 103

−0.1

0

0.1

0.2

0.3

Sketch Size K

Hong-Kong: 0.321

100 101 102 103

0

0.1

0.2

0.3

0.4

Sketch Size K

United-States: 0.442

Figure 1: Difference between each CWS algorithm, and the true WJS. The
dotted black line shows the value of zero for a perfect estimate and our new
SCWS is in red. Above each figure is the word-pair under test, with the true
WJS.
Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 12 / 19

Word Similarity, with respect to sketch time (ms)

10−3 10−2 10−1 100 101 102 103

0

5 · 10−2

0.1

B
ia
s

IBM-PC: 0.107

SCWS
ICWS
ICWS-0Bit

10−3 10−2 10−1 100 101 102 103

−1

0

1

2

·10−2 Apple-Microsoft: 0.020

10−3 10−2 10−1 100 101 102 103

0

1

2

·10−2 Car-Bike: 0.025

10−4 10−3 10−2 10−1 100 101

−2

0

2

4

·10−2

B
ia
s

Subsidies-Settlements: 0.040

10−3 10−2 10−1 100 101 102

−0.1

0

0.1

0.2

0.3

Avg. sketch time in ms

Hong-Kong: 0.321

10−3 10−2 10−1 100 101 102 103

0

0.1

0.2

0.3

0.4

Avg. sketch time in ms

United-States: 0.442

Figure 2: Same as 1, but x-axis replaced with average time to construct the
sketch (in milliseconds).
Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 13 / 19

Classification, Accuracy

10−3 10−2 10−1 100 101 102

0.7

0.75

0.8

0.85

A
cc
ur
ac
y

a9a

10−3 10−2 10−1 100 101 102

0.7

0.8

0.9

cod-rna

SCWS
ICWS
ICWS-0Bit
Kernel-SVM
Linear-SVM

10−3 10−2 10−1 100 101 102
0.65

0.7

0.75

0.8

Covtype

10−3 10−2 10−1 100 101 102

0.86

0.88

0.9

0.92

0.94

0.96

0.98
MNIST

10−3 10−2 10−1 100 101 102

0.9

0.95

1

A
cc
ur
ac
y

w8a

10−3 10−2 10−1 100 101 102

0.88

0.9

0.92

0.94

0.96

0.98

IJCNN

10−3 10−2 10−1 100 101 102

0.7

0.8

0.9

1

C

URL

10−3 10−2 10−1 100 101 102
0.85

0.86

0.87

0.88

0.89

0.9

C

RCV1

Figure 3: Performance of linear models built from CWS algorithms, compared
to a linear and kernel SVM. The x-axis C shows the regularization
parameter’s value, and the y-axis shows the accuracy of 5-fold cross validation.

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 14 / 19

Speedup

Table 1: D Indicates the dimension of the dataset, and ‘Density’ the
percentage of non-zero values in the corpus. The right-most column shows
how many times faster SCWS was.

Time to Hash (seconds)

Dataset D Density ICWS ICWS-0Bit SCWS Speedup

a9a 123 11.3 186 185 9 19.9
cod-rna 8 99.8 106 107 11 9.0
covtype 54 22.1 160 160 12 13.1
MNIST 780 19.2 1,937 1,922 86 22.1
ijcnn1 22 59.1 173 175 22 7.7
w8a 300 3.9 161 162 10 15.4
RCV1 47,236 0.14 661 658 52 12.6
URL 3,231,961 0.004 1,516 1,491 105 14.6

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 15 / 19

Search Precision

101 102 103
0

0.2

0.4

0.6

0.8

1

a9a Prec@1

ICWS
ICWS-0Bit
SCWS

101 102 103
0

0.2

0.4

0.6

0.8

1

cod-rna Prec@25

101 102 103
0

0.2

0.4

0.6

0.8

1

Covtype Prec@100

101 102 103
0

0.2

0.4

0.6

0.8

1

MNIST Prec@25

101 102 103
0

0.2

0.4

0.6

0.8

1

w8a Prec@1

101 102 103
0

0.2

0.4

0.6

0.8

1

Sketch Size K

IJCNN Prec@25

101 102 103
0

0.2

0.4

0.6

0.8

1

Sketch Size K

URL Prec@1

101 102 103
0

0.2

0.4

0.6

0.8

1

Sketch Size K

RCV1 Prec@1

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 16 / 19

Conclusions

SCWS performs about as well as ICWS. Sometimes better,
sometimes worse, sometimes the same.
SCWS is usually at least 10x faster, up to 22x.
SCWS lacks the same theory and backing; might not be
appropriate for all cases.

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 17 / 19

Questions?

raff_edward@bah.com
@EdwardRaffML

sylvester_jared@bah
@jsylvest

nicholas@umbc.edu
What’s Twitter?

Raff, Sylvester, and Nicholas CIKM 2018: SCWS October 25, 2018 18 / 19

References I

Sergey Ioffe. “Improved Consistent Sampling, Weighted Minhash
and L1 Sketching”. In: Proceedings of the 2010 IEEE International
Conference on Data Mining. ICDM ’10. Washington, DC, USA:
IEEE Computer Society, Dec. 2010, pp. 246–255. isbn:
978-0-7695-4256-0. doi: 10.1109/ICDM.2010.80. url:
http://ieeexplore.ieee.org/document/5693978/%20http:
//dx.doi.org/10.1109/ICDM.2010.80.

Ping Li. “0-Bit Consistent Weighted Sampling”. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’15. New York, NY, USA: ACM,
2015, pp. 665–674. isbn: 978-1-4503-3664-2. doi:
10.1145/2783258.2783406. url:
http://doi.acm.org/10.1145/2783258.2783406.

https://doi.org/10.1109/ICDM.2010.80
http://ieeexplore.ieee.org/document/5693978/%20http://dx.doi.org/10.1109/ICDM.2010.80
http://ieeexplore.ieee.org/document/5693978/%20http://dx.doi.org/10.1109/ICDM.2010.80
https://doi.org/10.1145/2783258.2783406
http://doi.acm.org/10.1145/2783258.2783406

References II

Edward Raff and Charles Nicholas. “Malware Classification and
Class Imbalance via Stochastic Hashed LZJD”. In: Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security.
AISec ’17. New York, NY, USA: ACM, 2017, pp. 111–120. isbn:
978-1-4503-5202-4. doi: 10.1145/3128572.3140446. url:
http://doi.acm.org/10.1145/3128572.3140446.

https://doi.org/10.1145/3128572.3140446
http://doi.acm.org/10.1145/3128572.3140446

	Introduction
	Simplified CWS

	Evaluation
	Word Similarity
	Search Precision

	Conclusion

