Predictability of User Behavior in Social Media:
Bottom-Up v. Top-Down Modeling

David Darmon and Jared Sylvester

in collaboration with
Bill Rand and Michelle Girvan
Predictability of User Behavior in Social Media

Social Media

Twitter, Facebook, Google+, Instagram, Path

Unprecedented access to

millions of people’s behavior

at second-level resolution.
Predictability of User Behavior in Social Media

Individual as a Computational Unit

Treat individuals as information processing units.

Not a new idea:
Claude Shannon (1948)
Information Theory and Channels

Simon DeDeo (2012)
Markov Models of Wikipedia Activity
Predictability of User Behavior in Social Media
Individual as a Computational Unit
Predictability of User Behavior in Social Media

Individual as a Computational Unit

Input

Output

Processing
The Setup
Predictability of User Behavior in Social Media

The Setup

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Tweet Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-08-22 12:54:06</td>
<td>Is Your Gmail Social? How to Use Gmail Daily to Build an Engaged Community</td>
</tr>
<tr>
<td>2013-08-22 13:11:22</td>
<td>Facebook's Embedded Posts Now Available to Everyone</td>
</tr>
<tr>
<td>2013-08-22 13:14:06</td>
<td>The Credible Hulk [link]</td>
</tr>
<tr>
<td>2013-08-22 13:29:02</td>
<td>25 Things You Didn’t Know About Ninjas</td>
</tr>
<tr>
<td>2013-08-22 13:48:46</td>
<td>10 Brilliant Facebook Marketing Tactics</td>
</tr>
<tr>
<td>2013-08-22 14:17:11</td>
<td>Google Now Adds Cards for NCAA Football, Concert Tickets, Car Rentals, and More</td>
</tr>
<tr>
<td>2013-08-22 15:18:03</td>
<td>What is the NSA Really Up To? [Comic]</td>
</tr>
<tr>
<td>2013-08-22 15:39:04</td>
<td>6 Things Every Good Business Blog MUST Have</td>
</tr>
</tbody>
</table>

User: DanielZeevi
Predictability of User Behavior in Social Media

The Setup

Bin (in time) Twitter data, giving a discrete time series for each user v at time t:

$$X(v, t) = 0 \quad \text{— user } v \text{ doesn’t tweet}$$

$$X(v, t) = 1 \quad \text{— user } v \text{ tweets}$$
Models
Predictability of User Behavior in Social Media

Modeling Framework — A Predictive View

A model that predicts well captures something about the computational capabilities of a user. Necessary but not sufficient.
Predictability of User Behavior in Social Media

Modeling Framework — A Predictive View

Simplifying assumption: a process with self-feedback.

Observe: \(X_{i-L}^{i-1} = (X_{i-L}, \ldots, X_{i-2}, X_{i-1}) \).

Predict: \(\hat{X}_i = \arg \max_{x \in \{0,1\}} r(x; X_{i-L}^{i-1}) \).
Predictability of User Behavior in Social Media

Modeling Framework — A Predictive View

Our goal: Learn r.
Learn the function mapping us from the past to the future.

In essence, a problem in autoregression.

Observe: $X_{i-L}^{i-1} = (X_{i-L}, \ldots, X_{i-2}, X_{i-1})$.

Predict: $\hat{X}_i = \arg \max_{x \in \{0,1\}} r(x; X_{i-L}^{i-1})$.
Predictability of User Behavior in Social Media
Modeling Framework — A Predictive View

Two approaches to learning r:

- Computational Mechanics
 “Bottom Up”

- Reservoir Computing
 “Top Down”
Models

Computational Mechanics
Assume $\{X_i\}_{i=1}^N$ was generated by a conditionally stationary stochastic process.

Explicitly learn the predictive distribution

$$P(X_i|X_{i-L}^{i-1} = x)$$

by grouping together pasts x that give equivalent predictions.
Predictability of User Behavior in Social Media

Computational Mechanics

The sets of equivalent pasts induce an auxiliary (hidden) process \(\{ S_i \}_{i=1}^{N} \) that is:

Markov

Prescient for prediction
We only need to know that hidden state to perform prediction.
Predictability of User Behavior in Social Media

Computational Mechanics

A —— 1 —— B

B —— 1 —— C

C —— 1 —— A

0 —— 1 —— 0

state
Predictability of User Behavior in Social Media

Computational Mechanics

Call the model learned the

causal state model (CSM)

for each user.

Learn this state-space representation of the process using

Causal State Splitting Reconstruction (CSSR).
Models

Echo State Networks
Predictability of User Behavior in Social Media

Feedforward Nets

Easy learning rules

Recurrent Nets

Good with sequences
Predictability of User Behavior in Social Media

Echo State Networks

Q: How do we learn these weights?
Predictability of User Behavior in Social Media

Echo State Networks

Q: How do we learn these weights?

A: We don’t.
Predictability of User Behavior in Social Media

Echo State Networks

Random, Fixed (sparse)

Trained

Q: How do we learn these weights?
A: We don’t.
Echo State Networks

$$y_t = \sigma(W_{in}x_t + W_y y_{t-1} + W_{fb} z_{t-1})$$

$$z_t = \sigma \left(W_{out} \begin{bmatrix} x_t \\ y_t \end{bmatrix} \right)$$
Data Collection and Processing
Predictability of User Behavior in Social Media

The Dataset

Twitter users embedded in a 15k user follower network.

Statuses of all users collected over 7 weeks.

Select 3k subset of most frequently tweeting users.
Predictability of User Behavior in Social Media

The Dataset — Coarsening

Need to looking L steps back in time.

Dimensionality of predictive space grows like 2^L.

To deal with this limitation:
coarsen users’ time series.
Predictability of User Behavior in Social Media

Example

```
0 0 0 1 1 1 1 0 0 1 1 0
...
0 1 1...
```

“Does the user tweet during each binning?”
bin size = 600 s = 10 min
Results
Predictability of User Behavior in Social Media

Testing Procedure

• Build model for each user separately
• Training: 45 days
• Testing: 4 days
• Look back 10 steps
• Predict ahead 1 step
• 0-1 Loss
• Compare to “majority vote” baseline
ESN vs. Baseline

Accuracy Rate vs. Tweet Rate

- Red dots: Baseline
- Blue dots: ESN
CSM vs. ESN

The scatter plot shows a strong correlation between CSM Improvement and ESN Improvement, with a regression line indicating a nearly perfect linear relationship. The correlation coefficient is 0.6.
Case Studies
User: DanielZeevi

Base Rate: 0.4506
CSM Rate: 0.9477
ESN Rate: 0.9419
User: LiveFreeRadio

Base Rate: 0.2122
CSM Rate: 0.7035
ESN Rate: 0.7936
Conclusions and Future Directions
Predictability of User Behavior in Social Media

Conclusions

Many users on Twitter are well-modeled as processes with self-feedback.
 Didn’t need social information.

Computational Mechanics and Echo State Networks performed similarly on a large proportion of users.
 Despite very dissimilar modeling paradigms.
Predictability of User Behavior in Social Media

Future Work

Consider:

- Network effects
- Explicitly consider social dynamics

Content from Tweets
- Sentiment, etc.

Longitudinal studies
- Do users change over time?
Thanks!

Questions?